Abstract Title:

Chronic administration of genistein improves endothelial dysfunction in spontaneously hypertensive rats: involvement of eNOS, caveolin and calmodulin expression and NADPH oxidase activity.

Abstract Source:

Clin Sci (Lond). 2007 Feb;112(3):183-91. PMID: 17007611

Abstract Author(s):

Rocio Vera, Manuel Sánchez, Milagros Galisteo, Inmaculada Concepcion Villar, Rosario Jimenez, Antonio Zarzuelo, Francisco Pérez-Vizcaíno, Juan Duarte


The soya-derived phytoestrogen genistein has been suggested to be protective in cardiovascular diseases. In the present study, we have analysed whether chronic oral genistein might influence endothelial function in male SHRs (spontaneously hypertensive rats) via ERs (oestrogen receptors), changes in eNOS (endothelial NO synthase) activity and vascular O(2)(-) (superoxide) production. Rats (23-weeks old) were divided into the following groups: WKY (Wistar-Kyoto)-vehicle, SHR-vehicle, WKY-genistein (10 mg.kg(-1) of body weight.day(-1)); SHR-genistein; SHR-genistein-faslodex (ICI 182780; 2.5 mg.kg(-1) of body weight.day(-1)). Vascular expression of eNOS, caveolin-1 and calmodulin-1 were analysed by Western blotting, eNOS activity by conversion of [(3)H]arginine into L-[(3)H]citrulline and O(2)(-) production by chemoluminescence of lucigenin. In SHRs, after 5 weeks of treatment, genistein reduced systolic blood pressure and enhanced endothelium-dependent aortic relaxation to acetylcholine, but had no effect on the vasodilator responses to sodium nitroprusside. Compared with WKY rats, SHRs had up-regulated eNOS and down-regulated caveolin-1 and calmodulin-1 expression, increased NADPH-induced O(2)(-) production, but reduced eNOS activity. Genistein increased aortic calmodulin-1 protein abundance and eNOS activity, and reduced NADPH-induced O(2)(-) production in SHRs. The pure ERalpha and ERbeta antagonist faslodex did not modify any of the changes induced by genistein in SHRs, suggesting that these effects are unrelated to ER stimulation. In conclusion, genistein reduced the elevated blood pressure and endothelial dysfunction in SHRs. This latter effect appears to be related to increased eNOS activity associated with increased calmodulin-1 expression and decreased O(2)(-) generation.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.