n/a
Abstract Title:

The herbal extract ALS-L1023 from Melissa officinalis reduces weight gain, elevated glucose levels andβ-cell loss in Otsuka Long-Evans Tokushima fatty rats.

Abstract Source:

J Ethnopharmacol. 2021 Jan 10 ;264:113360. Epub 2020 Sep 9. PMID: 32918993

Abstract Author(s):

Yujin Shin, Dongju Lee, Jiwon Ahn, Mijeong Lee, Soon Shik Shin, Michung Yoon

Article Affiliation:

Yujin Shin

Abstract:

ETHNOPHARMACOLOGICAL RELEVANCE: Melissa officinalis L. (Labiatae; lemon balm) is a traditional medicinal plant with hypoglycemic and hypolipidemic effects; however, how it imparts its beneficial effects remains unclear. We thus hypothesized that the herbal extract ALS-L1023, isolated from Melissa officinalis, inhibits obesity and diabetes, and tested our hypothesis using Otsuka Long-Evans Tokushima fatty (OLETF) rats, which are an established animal model of type 2 diabetes.

MATERIALS AND METHODS: In this study, 28-week-old OLETF rats were fed a high-fat diet for 4 weeks to induce a marked impairment of the insulin response and were treated with or without ALS-L1023. Subsequently, the variables and determinants of glucose metabolism and pancreatic function were assessed via blood analysis, histology, immunohistochemistry, and real-time polymerase chain reaction.

RESULTS: The administration of ALS-L1023 resulted in a weight reduction without changes in food intake. It also markedly inhibited hyperglycemia and hypoinsulinemia, and restoredβ-cell mass that was severely impaired in OLETF rats. There was a decrease in lipid accumulation in the liver and skeletal muscle of the obese rats after treatment with ALS-L1023. Concomitantly, there was an increase in the expression levels of fatty acid-oxidizing enzymes (AMPKα2, ACOX, MCAD, andVLCAD) in the liver and skeletal muscle after ALS-L1023 treatment. Furthermore, ALS-L1023 attenuated the pancreatic inflammation including the infiltration of CD68-positive macrophages and mast cells, in addition to attenuating the expression of inflammatory factors (IL-6 and CD68).

CONCLUSIONS: These results suggest that treatment with ALS-L1023 may reduce weight gain, elevated glucose levels, andβ-cell loss, by changing the expression of fatty acid-oxidizing enzymes in the liver and skeletal muscle, including inflammatory factors in the pancreas. These findings indicate that ALS-L1023 may be an effective therapeutic strategy to treat human obesity and type 2 diabetes.

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.