Abstract Title:

Bacteriostatic Effect of Quercetin as an Antibiotic Alternative In Vivo and Its Antibacterial Mechanism In Vitro.

Abstract Source:

J Food Prot. 2018 Jan ;81(1):68-78. PMID: 29271686

Abstract Author(s):

Shengan Wang, Jiaying Yao, Bo Zhou, Jiaxin Yang, Maria T Chaudry, Mi Wang, Fenglin Xiao, Yao Li, Wenzhe Yin

Article Affiliation:

Shengan Wang


Quercetin, a ubiquitous flavonoid, is known to have antibacterial effects. The purpose of this study was to investigate the effect of quercetin on cecal microbiota of Arbor Acre (AA) broiler chickens in vivo and the bacteriostatic effect and antibacterial mechanism of quercetin in vitro. In vivo, 480 AA broilers (1 day old) were randomly allotted to four treatments (negative control and 0.2, 0.4, or 0.6 g of quercetin per kg of diet) for 42 days. Cecal microbial population and distribution were measured at the end of the experiment. The cecal microflora in these broilers included Proteobacteria, Fimicutes, Bacteroidetes, and Deferribacteres. Compared with the negative control, quercetin significantly decreased the copies of Pseudomonas aeruginosa ( P<0.05), Salmonella enterica serotype Typhimurium ( P<0.01), Staphylococcus aureus ( P<0.01), and Escherichia coli ( P<0.01) but significantly increased the copies of Lactobacillus ( P<0.01), Bifidobacterium ( P<0.01), and total bacteria ( P<0.01). In vitro, we investigated the bacteriostatic effect of quercetin on four kinds of bacteria ( E. coli, P. aeruginosa, S. enterica Typhimurium, and S. aureus) and the antibacterial mechanism of quercetin in E. coli and S. aureus. The bacteriostatic effect of quercetin was stronger on gram-positive bacteria than on gram-negative bacteria. Quercetin damaged the cell walls and membranes of E. coli (at 50× MIC) and S. aureus (at 10 × MIC). Compared with the control, the activity of the extracellular alkaline phosphatase and β-galactosidase and concentrations of soluble protein in E. coli and S. aureus were significantly increased (all P<0.01), and the activity of ATP in S. aureus was significantly increased ( P<0.01); however, no significant change in ATP activity in E. coli was observed ( P>0.05). These results suggest that quercetin has potential as an alternative antibiotic feed additive in animal production.

Study Type : Animal Study, In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.