Abstract Title:

Glucose intolerance in monosodium glutamate obesity is linked to hyperglucagonemia and insulin resistance inα cells.

Abstract Source:

J Cell Physiol. 2018 Oct 14. Epub 2018 Oct 14. PMID: 30317580

Abstract Author(s):

Thiago R Araujo, Joel A da Silva, Jean F Vettorazzi, Israelle N Freitas, Camila Lubaczeuski, Emily A Magalhães, Juliana N Silva, Elane S Ribeiro, Antonio C Boschero, Everardo M Carneiro, Maria L Bonfleur, Rosane Aparecida Ribeiro

Article Affiliation:

Thiago R Araujo


Obesity predisposes to glucose intolerance and type 2 diabetes (T2D). This disease is often characterized by insulin resistance, changes in insulin clearance, andβ-cell dysfunction. However, studies indicate that, for T2D development, disruptions in glucagon physiology also occur. Herein, we investigated the involvement of glucagon in impaired glycemia control in monosodium glutamate (MSG)-obese mice. Male Swiss mice were subcutaneously injected daily, during the first 5 days after birth, with MSG (4 mg/g body weight [BW]) or saline (1.25 mg/g BW). At 90 days of age, MSG-obese mice were hyperglycemic, hyperinsulinemic, and hyperglucagonemic and had lost the capacity to increase their insulin/glucagon ratio when transitioning from the fasting to fed state, exacerbating hepatic glucose output. Furthermore, hepatic protein expressions of phosphorylated (p)-protein kinase A (PKA) and cAMP response element-binding protein (pCREB), and of phosphoenolpyruvate carboxykinase (PEPCK) enzyme were higher in fed MSG, before and after glucagon stimulation. Increased pPKA and phosphorylated hormone-sensitive lipase content were also observed in white fat of MSG. MSG islets hypersecreted glucagon in response to 11.1 and 0.5 mmol/L glucose, a phenomenon that persisted in the presence of insulin. Additionally, MSG α cells were hypertrophic displayingincreased α-cell mass and immunoreactivity to phosphorylated mammalian target of rapamycin (pmTOR) protein. Therefore, severe glucose intolerance in MSG-obese mice was associated with increased hepatic glucose output, in association with hyperglucagonemia, caused by the refractory actions of glucose and insulin in α cells and via an effect that may be due to enhanced mTOR activation.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.