Abstract Title:

Selenium mitigates cadmium toxicity by preventing oxidative stress and enhancing photosynthesis and micronutrient availability on radish (Raphanus sativus L.) cv. Cherry Belle.

Abstract Source:

Environ Sci Pollut Res Int. 2020 Jan 29. Epub 2020 Jan 29. PMID: 31997246

Abstract Author(s):

Setareh Auobi Amirabad, Farhad Behtash, Yavar Vafaee

Article Affiliation:

Setareh Auobi Amirabad


We aimed to examine the effects of selenium on the tolerance of radish plants CV. Cherri Belle under cadmium phytotoxicity. The biomass accumulation was drastically decreased under Cd toxicity and the supplementary Se maintained the biomass acquisition under Cd pressure. The chlorophyll index (SPAD), PSII efficiency (Fv/Fm), and PSII quantum yield (ΦPSII) were declined in response to Cd treatment, while Se nutrition improved these variables in a dose-dependent manner. The highest HOand MDA contents were observed in the plants fed with 10 mg L Cd. The Cd stress resulted in a considerable decline in the activities of GPX, CAT, and APX antioxidant enzymes, while Se supplementation increased their activities in the Cd-treated plants. Based on the mineral analyses, no Cd was traced in the control plants, while the Cd concentration in bothroots and leaves of the Cd-stressed radish plants increased with increasing the supplemented Cd levels. Compared with plants solely treated with 10 mg LCd, Se nutrition declined the Cd absorption in roots and in leaves. The concentration of evaluated micronutrients including Fe, Mn, Cu, and Zn tended to decrease in the Cd-imposed plants in comparison with control plants. Se nutrition of both stressed and non-stressed radish plants increased the concentrations of the studied microelements, except for Zn in which the individual use of Se led to a decrease in the Zn content. Significant positive and negative correlation values were found among the studied traits and the principle component analysis (PCA) biplot and Ward dendrogram confirmed the results of the correlation analysis. Se proved to be efficient in the alleviation of Cd-triggered deleterious effects by improving biomass acquisition, enhancing chlorophyll biosynthesis and fluorescence, and increasing micronutrient uptake in a dose-dependent manner. Furthermore, the Se alleviation mechanism under Cd stress was also connected with the activation of enzymatic antioxidative protection system as well as with decreasing Cd uptake, transport, and distribution in radish leaves. Altogether, our research strongly suggests the implementation of Se in the growth medium to enhance the tolerance of radish plants under Cd stress.

Study Type : Plant Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.